OFFERED:

UNCONVENTIONAL OXYALKYLATION CATALYSTS AND TECHNOLOGY SOLUTIONS

CALCIUM CATALYST

MEO-Ca

PROMOTES

ETHOXYLATION OF:
- ALKOHOLS
- ESTERS

RARE EARTH METAL HOMOGENEOUS

LANTHANUM CATALYST

MEO-La

COORDINATIVE HETEROGENEOUS

PROMOTES

ETHOXYLATION AND PROPOXYLATION OF:
- ALKOHOLS

COBALTITUM - CATALYST

MEO-DMC

DI-METAL CYANIDE TYPE

PROMOTES

HIGH MOLECULAR PROPOXYLATION OF:
- POLYOLS

AVAILABLE

LABORATORY SERVICE

ETOXYLATION AND PROPOXYLATION

EXPERTISE

IN OXYALKYLATION

DIRECT ETHOXYLATION OF:
- fatty acid methyl esters
- vegetable oils
- animal fats
- and the other variable esters
Catalytic activity

Table 1. Comparative statement of activity of the offered catalyst

<table>
<thead>
<tr>
<th></th>
<th>Oxyethylation</th>
<th>Oxypropylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodecanol</td>
<td>NaOH MEO-Ca MEO-La</td>
<td>NaOH MEO-Ca MEO-La</td>
</tr>
<tr>
<td>Methyl dodecanoate</td>
<td>NaOH MEO-Ca MEO-La</td>
<td>Na⁺ MEO-Ca MEO-La</td>
</tr>
</tbody>
</table>

Legend:
- Active
- Not active

Operating parameters
- Temperature range: 120-185°C;
- Overpressure range: 0.3-0.5 MPa
- Concentration: 0.5%, per product wt.

Fig. 1. Fractional composition of oxyethylated a) dodecanol and b) methyl dodecanoate, as obtained with in the presence of the homogeneous calcium catalyst (MEO-Ca), the heterogeneous lanthanum catalyst (MEO-La) and NaOH as the conventional homogeneous alkaline catalyst, respectively, at molar ratio of oxirane to hydrophobe N_{ox} = 4

Fig 2. Fractional composition of oxypropylated dodecanol as obtained with homogeneous calcium catalyst (MEO-Ca), heterogeneous lanthanum catalyst (MEO-La) and NaOH as the conventional homogeneous alkaline catalyst, respectively, at at molar ratio of methoxirane to hydrophobe N_{ox} = 4
DMC (double metal cyanide) catalyst

- DMC catalyst used for epoxide polymerization, that is, for polymerizing alkylene oxides such as propylene oxide and ethylene oxide to yield high molecular weight polether polyols.

- In conventional base catalyzed oxyalkylation reaction, propylene oxide and certain other alkylene oxides are subject to a competing internal rearrangement that generates unsaturated alcohols. The resulting products will contain allyl alcohol initiated, monofunctional impurities. The monofunctional impurities tend to reduce the average functionality and broaden the polydispersity of the polyols.

- Compared with similar polyols made using conventional basic catalyst, polyether polyols made from the DMC catalyst have low unsaturations, narrow molecular weight distributions, can have high molecular weight, and are useful in making a variety of polyurethane products.

- Moreover this catalyst can be used with less amount (ppm) and reaction time of polymerization is reduced largely.

An exemplary record from dynamic trends of the reaction parameters during the control activity test of MEO-DMC catalyst is presented in Fig. 2.

Fig. 2. Activity control test of MEO-DMC catalyst during propoxylation of polypropylene glycol 450, at 66 ppm concentration, where: **blue line means weight of alkylene oxides in feeding vessel**, **red line denotes temperature**, **green line sets pressure during synthesis**.

The synthesis was performed in a computerized 1 dm³ laboratory reactor equipped with PLCS system, mechanical stirrer, heating jacket and cooling coil. The reaction temperature was 130ºC and overpressure 0,3 – 0,6 MPa.
OXAD K 251
NEW ETHOXYLATE
OF VEGETABLE OILS

A GREEN CONCEPT OF SYNTHESIS AND APPLICATION

Information: marketing@icsochp.com.pl, mexeo@mexeo.pl
16 brands of hand dishwashing liquids were evaluated, which were purchased from the market and well represented the product sector.

The comparative criteria included their price in big markets, cleaning performance, dry substance, foaming and viscosity. It was shown, that the dishwashing formulation containing ethoxylated oils - OXAD K 251 (green bar) exhibited superior performance properties, compared to the existing market offer. Based on the obtained results, ranking of the investigated products was presented comparing their profitability of production, attraction for consumers and quality of the formulations.